倒数第二颗牙齿叫什么| 原始鳞状上皮成熟是什么意思| 海带排骨汤海带什么时候放| 传教士是什么姿势| choker什么意思| 父母都是b型血孩子是什么血型| 来月经肚子疼是什么原因| 清除胃火吃什么药| 柠檬酸是什么添加剂| 大学校长是什么级别| 血压测不出来什么原因| 六月二十日是什么日子| 如果你是什么那快乐就是什么| 吃什么能瘦| 碧霄是什么意思| 男人吃逍遥丸治什么病| 北京为什么叫四九城| 株连九族是什么意思| 一什么木屋| 姜粉什么时候喝最好| 211和985是什么意思| 什么是末法时代| 膻中穴在什么位置| gmp是什么| 乙肝看什么科| 1975属什么生肖| 煮牛肉放什么容易烂| 蒲公英吃了有什么好处| 中风吃什么药最有效| 磁共振平扫检查什么| 九浅一深什么意思| 5月24号是什么星座| 小孩嘴唇发白是什么原因| 欲语还休是什么意思| 日午念什么| 主管是什么级别| 大便干燥用什么药| 为什么下巴经常长痘痘| 小孩脱发是什么原因引起的| 活塞是什么意思| ecc是检查什么的| 小沙弥是什么意思| 什么牙膏最好| 舌吻是什么意思| 米干是什么| 左卡尼汀口服溶液主要治疗什么| 为什么身上痒一抓就起疙瘩| 为什么8到10周容易胎停| 药师佛手里拿什么法器| 溏是什么意思| 女生真空是什么意思| 屁臭是什么原因造成的| 5月出生是什么星座| 枕头太低了有什么危害| 吃生洋葱有什么好处| 幼儿急疹吃什么药| 男神是什么意思| 膝关节积液是什么原因造成的| 送锦旗有什么讲究| 胃胀气是什么原因| 屋尘螨是什么东西| 痛风买什么药| 手经常出汗是什么原因| 胃糜烂有什么症状| π是什么意思| 冷战的男人是什么心理| 梦见自己生个女孩是什么意思| 做胃肠镜挂什么科| 60大寿送什么礼物| 着床出血是什么样子的| img什么意思| 酒店五行属什么| 什么血型的人最多| 10.30是什么星座| 五指毛桃煲汤配什么| 增生是什么原因造成的| 嘴唇紫黑是什么原因| 为什么会得痔疮| 芈月和秦始皇是什么关系| 家有喜事是什么生肖| 子宫肌瘤做什么检查能查出来| 冰藤席是什么材质| 小孩打嗝是什么原因| 洲际导弹是什么意思| 喜用神是什么| 貂蝉属什么生肖| 普惠幼儿园是什么意思| 奥利给什么意思| 下身瘙痒什么原因| 一个月来两次例假是什么原因| 薄荷脑是什么东西| 经常吃辣椒有什么好处和坏处| 浓茶喝多了有什么危害| 巫师是什么意思| 19属什么| 貂是什么动物| 树上长的像灵芝的是什么| 如饥似渴是什么意思| 甲亢适合吃什么食物| 背痛去医院挂什么科| 大便每天四五次是什么病| 偏头疼挂什么科室| 牙齿冷热都疼是什么原因| 工装裤搭配什么鞋子| 蓄势是什么意思| 史无前例是什么意思| 双头蛇是什么意思| 荣辱与共是什么意思| 一路繁花的意思是什么| 维生素b2有什么作用| 什么叫真爱| 6.28什么星座| 薏米长什么样子的图片| aape是什么牌子| 牛子是什么| 花匠是什么意思| 玩微博的都是什么人| 刀客是什么意思| 8023是什么意思啊| 海马体是什么| 肺动脉流的是什么血| 知府相当于现在什么官| hpv是指什么| 甲状腺结节什么引起的| 隔岸观火是什么意思| 丑指什么生肖| 两肺纹理增多是什么意思| 锦是什么意思| 狸是什么动物| 头发爱出油是什么原因| 夏天适合种什么菜| 人的脂肪是什么颜色| 金戈铁马是什么生肖| 小孩肚脐周围疼是什么原因| 农历7月20日是什么星座| 核准日期是什么意思| 猫贫血吃什么补血最快| 白莲花是什么意思| 孕妇喉咙痛吃什么好得最快| 上炕是什么意思| 什么时候不能喷芸苔素| 远房亲戚是什么意思| 梦见别人过生日是什么意思| 陈赫什么星座| 乙肝两对半和乙肝五项有什么区别| bp是什么职位| 秦国是现在的什么地方| 三点水一个兆读什么| evisu是什么牌子| sla是什么| 早上起床手指肿胀是什么原因| 婷婷玉立什么意思| hcg低有什么补救的办法| 肠道门诊看什么病| 告辞是什么意思| 路人甲什么意思| 腰疼是什么原因引起的| 波尔多红是什么颜色| 跳蛋什么意思| 胸闷气短是什么原因引起的| 困境是什么意思| 大林木是什么生肖| 黄体是什么意思| 满人是什么民族| 冬至下雨有什么说法| 木白念什么| 胎盘低要注意什么| 老鼠属于什么类动物| 石英机芯什么意思| 胆酷醇高有什么危害| 左侧头疼是什么原因引起的| 正常的尿液是什么颜色| 痛风性关节炎吃什么药| 嘴上起泡是什么原因| 衤字旁的字与什么有关| 无下限是什么意思| 乳腺炎吃什么消炎药| 唐氏宝宝是什么意思| 受害者是什么意思| 罗字五行属什么| 胆红素阴性是什么意思| 生辉是什么意思| 老放屁是什么原因| 确立是什么意思| 白癜风用什么药| 下嘴唇溃疡是什么原因| 经期上火了吃什么降火| 耳鸣是什么原因导致的| 吃什么能化解肾结石| 为什么身上会出现淤青| 俄罗斯乌克兰为什么打仗| 预热是什么意思| 胃食管反流挂什么科| 古曼童是什么| 前列腺炎有什么征兆| 扁桃体发炎能吃什么水果| 什么是处方药| 腺肌症是什么| 踮脚走路有什么好处| 卡介苗是预防什么的| 依然如故的故是什么意思| 八字七杀是什么意思| 本自具足是什么意思| 男生做爱什么感觉| 什么是猎奇| 黑色素瘤是什么| 芃字五行属什么| 血儿茶酚胺是查什么的| 什么情况下容易怀孕| 体寒是什么原因引起的| 为什么会得阴虱| 女人为什么要穿高跟鞋| 李时珍的皮是什么意思| 时光什么意思| 过敏性鼻炎引起眼睛痒用什么药| 五塔标行军散有什么功效| 医学上pi是什么意思| 脑白质病变是什么意思| 以身相许是什么意思| 人为什么要有性生活| 94年的属什么| 嘴唇为什么会干| 清肺火吃什么药| 四叶草代表什么| 司空见惯是说司空见惯了什么| 什么是乳酸堆积| 骨肉瘤是什么病| 海狗是什么动物| 口字五行属什么| 小叶增生吃什么药| spf50是什么意思| 10月25号是什么星座| 非处方药是什么意思| 弱水是什么意思| 金牛座是什么星象| 1942年属什么生肖| 吃什么东西对肾好| 师弟是什么意思| 阳光是什么颜色| 眼睛有眼屎是什么原因| 十月十一日是什么星座| dove什么意思| 特性是什么意思| 无创是什么检查| 手总是发麻是什么原因| 食物中毒吃什么药解毒| 小孩磨牙是什么原因引起的| 产生幻觉是什么原因| 舌头干燥是什么原因| 什么是粘胶纤维| 生物指的是什么| 什么是杀猪菜| 八字带什么的长寿| 东南属什么五行| 口干口苦口臭是什么原因引起的| 酌情处理是什么意思| 今期难过美人关是什么生肖| xxoo是什么意思| 2026年是什么命| 手脱臼有什么症状| 才高八斗是什么生肖| 亲家母是什么意思| 世上谁嫌男人丑的前一句是什么| 为什么会有鼻屎| 百度
 

第四节 地震灾难不同阶段常见精神卫生问题及其处理

百度   内太阳系的各天体中同位素组成的差异,可以用来研究陨石和岩质行星的关系。

Learn the generic scenarios and techniques of grouping and aggregating data, partitioning and ranking data in SQL, which will be very helpful in reporting requirements.



SQL Group By and Partition By Scenarios: When and How to Combine Data in Data Science
Image by Freepik

 

Introduction

 

SQL (Structured Query Language) is a programming language used for managing and manipulating data. That is why SQL queries are very essential for interacting with databases in a structured and efficient manner.

Grouping in SQL serves as a powerful tool for organizing and analyzing data. It helps in extraction of meaningful insights and summaries from complex datasets. The best use case of grouping is to summarize and understand data characteristics, thus helping businesses in analytical and reporting tasks.

We generally have a lot of requirements where we need to combine the dataset records by common data to calculate statistics in the group. Most of these instances can be generalized into common scenarios. These scenarios can then be applied whenever a requirement of similar kind comes up.

 

SQL Clause: Group By

 

The GROUP BY clause in SQL is used for

  1. grouping data on some columns
  2. reducing the group to a single row
  3. performing aggregation operations on other columns of the groups.

Grouping Column = The value in the Grouping column should be same for all rows in the group

Aggregation Column = Values in the Aggregation column are generally different over which a function is applied like sum, max etc.

The Aggregation column should not be the Grouping Column.

 

Scenario 1: Grouping to find the sum of Total

 

Let's say we want to calculate the total sales of every category in the sales table.

So, we will group by category and aggregate individual sales in every category.

select category, 
sum(amount) as sales
from sales
group by category;

 

Grouping column = category

Aggregation column = amount

Aggregation function = sum()

category sales
toys 10,700
books 4,200
gym equipment 2,000
stationary 1,400

 

Scenario 2: Grouping to find Count

 

Let’s say we want to calculate the count of employees in each department.

In this case, we will group by the department and calculate the count of employees in every department.

select department, 
count(empid) as emp_count
from employees
group by department;

 

Grouping column = department

Aggregation column = empid

Aggregation function = count

department emp_count
finance 7
marketing 12
technology 20

 

Scenario 3: Grouping to find the Average

 

Let’s say we want to calculate the average salary of employees in each department

Similarly, we will again group them by department and calculate the average salaries of employees in every department separately.

select department, 
avg(salary) as avg_salary
from employees
group by department;

 

Grouping column = department

Aggregation column = salary

Aggregation function = avg

department avg_salary
finance 2,500
marketing 4,700
technology 10,200

 

Scenario 4: Grouping to find Maximum / Minimum

 

Let’s say we want to calculate the highest salary of employees in each department.

We will group the departments and calculate the maximum salary in every department.

select department, 
max(salary) as max_salary
from employees
group by department;

 

Grouping column = department

Aggregation column = salary

Aggregation function = max

department max_salary
finance 4,000
marketing 9,000
technology 12,000

 

Scenario 5: Grouping to Find Duplicates

 

Let’s say we want to find duplicate or same customer names in our database.

We will group by the customer name and use count as an aggregation function. Further we will use having a clause over the aggregation function to filter only those counts that are greater than one.

select name, 
count(*) AS duplicate_count
from customers
group by name
having count(*) > 1;

 

Grouping column = name

Aggregation column = *

Aggregation function = count

Having = filter condition to be applied over aggregation function

name duplicate_count
Jake Junning 2
Mary Moone 3
Peter Parker 5
Oliver Queen 2

 

SQL Clause: Partition By

 

The PARTITION BY clause in SQL is used for

  1. grouping/partitioning data on some columns
  2. Individual rows are retained and not combined into one
  3. performing ranking and aggregation operations on other columns of the group/partition.

Partitioning column = we select a column on which we group the data. The data in the partition column must be the same for each group. If not specified, the complete table is considered as a single partition.

Ordering column = With each group created based on the Partitioning Column, we will order/sort the rows in the group

Ranking function = A ranking function or an aggregation function will be applied to the rows in the partition

 

Scenario 6: Partitioning to find the Highest record in a Group

 

Let’s say we want to calculate which book in every category has the highest sales - along with the amount that the top seller book has made.

In this case, we cannot use a group by clause - because grouping will reduce the records in every category to a single row.

However, we need the record details such as book name, amount, etc., along with category to see which book has made the highest sales in each category.

select book_name, amount
row_number() over (partition by category order by amount) as sales_rank
from book_sales;

 

Partitioning column = category

Ordering column = amount

Ranking function = row_number()

This query gives us all the rows in the book_sales table, and the rows are ordered in every book category, with the highest-selling book as row number 1.

Now we need to filter only row number 1 rows to get the top-selling books in each category

select category, book_name, amount from (
select category, book_name, amount
row_number() over (partition by category order by amount) as sales_rank
from book_sales
) as book_ranked_sales
where sales_rank = 1;

 

The above filter will give us only the top seller books in each category along with the sale amount each top-seller book has made.

category book_name amount
science The hidden messages in water 20,700
fiction Harry Potter 50,600
spirituality Autobiography of a Yogi 30,800
self-help The 5 Love Languages 12,700

 

Scenario 7: Partitioning to Find Cumulative Totals in a Group

 

Let’s say we want to calculate the running total (cumulative total) of the sale as they are sold. We need a separate cumulative total for every product.

We will partition by product_id and sort the partition by date

select product_id, date, amount,
sum(amount) over (partition by product_id order by date desc) as running_total
from sales_data;

 

Partitioning column = product_id

Ordering column = date

Ranking function = sum()

product_id date amount running_total
1 2025-08-08 3,900 3,900
1 2025-08-08 3,000 6,900
1 2025-08-08 2,700 9,600
1 2025-08-08 1,800 11,400
2 2025-08-08 2,000 2,000
2 2025-08-08 1,000 3,000
2 2025-08-08 7,00 3,700
3 2025-08-08 1,500 1,500
3 2025-08-08 4,00 1,900

 

Scenario 8: Partitioning to Compare Values within a Group

 

Let’s say we want to compare the salary of every employee with the average salary of his department.

So we will partition the employees based on department and find the average salary of each department.

The average can be further easily subtracted from the employee's individual salary to calculate if employee's salary is higher or below the average.

select employee_id, salary, department,
avg(salary) over (partition by department) as avg_dept_sal
from employees;

 

Partitioning column = department

Ordering column = no order

Ranking function = avg()

employee_id salary department avg_dept_sal
1 7,200 finance 6,400
2 8,000 finance 6,400
3 4,000 finance 6,400
4 12,000 technology 11,300
5 15,000 technology 11,300
6 7,000 technology 11,300
7 4,000 marketing 5,000
8 6,000 marketing 5,000

 

Scenario 9: Partitioning to divide results into equal groups

 

Let’s say we want to divide the employees into 4 equal (or nearly equal) groups based on their salary.

So we will derive another logical column tile_id, which will have the numeric id of each group of employees.

The groups will be created based on salary - the first tile group will have the highest salary, and so on.

select employee_id, salary,
ntile(4) over (order by salary desc) as tile_id
from employees;

 

Partitioning column = no partition - complete table is in the same partition

Ordering column = salary

Ranking function = ntile()

employee_id salary tile_id
4 12,500 1
11 11,000 1
3 10,500 1
1 9,000 2
8 8,500 2
6 8,000 2
12 7,000 3
5 7,000 3
9 6,500 3
10 6,000 4
2 5,000 4
7 4,000 4

 

Scenario 10: Partitioning to identify islands or gaps in data

 

Let’s say we have a sequential product_id column, and we want to identify gaps in this.

So we will derive another logical column island_id, which will have the same number if product_id is sequential. When a break is identified in product_id, then the island_id is incremented.

select product_id,
row_number() over (order by product_id) as row_num,
product_id - row_number() over (order by product_id) as island_id,
from products;

 

Partitioning column = no partition - complete table is in the same partition

Ordering column = product_id

Ranking function = row_number()

product_id row_num island_id
1 1 0
2 2 0
4 3 1
5 4 1
6 5 1
8 6 2
9 7 2

 

Conclusion

 

Group By and Partition By are used to solve many problems like:

Summarizing Information: Grouping allows you to aggregate data and summarize information in every group.

Analyzing Patterns: It helps in identifying patterns or trends within data subsets, providing insights into various aspects of the dataset.

Statistical Analysis: Enables the calculation of statistical measures such as averages, counts, maximums, minimums, and other aggregate functions within the groups.

Data Cleansing: Helps identify duplicates, inconsistencies, or anomalies within groups, making data cleansing and quality improvement more manageable.

Cohort Analysis: Useful in cohort-based analysis, tracking and comparing groups of entities over time etc.
 
 

Hanu runs the?HelperCodes Blog?which mainly deals with?SQL?Cheat Sheets. I am a full stack developer and interested in creating reusable assets.



咽炎什么症状 神经衰弱吃什么中成药 部队股长是什么级别 名垂千古是什么意思 硬卧代硬座是什么意思
为什么妇科病要肛门塞药 牙齿发麻是什么原因 手指经常抽筋是什么原因 肠道湿热吃什么药 距骨在什么位置
皮皮虾吃什么 680分能上什么大学 阴阳两虚吃什么药最好 乏了是什么意思 小灶是什么意思
球镜柱镜是什么意思 路怒症是什么 什么的精神 利水渗湿是什么意思 腰闪了是什么症状
华在姓氏里读什么hcv9jop0ns3r.cn 血窦是什么意思hcv8jop6ns6r.cn 小孩几天不大便是什么原因怎么办hcv7jop7ns1r.cn 水瓶座的幸运色是什么fenrenren.com 桑葚和什么泡酒壮阳hcv7jop7ns4r.cn
中国铁塔是干什么的wzqsfys.com 芸字五行属什么hcv9jop0ns7r.cn 挂绿荔枝为什么那么贵helloaicloud.com 肺结核是什么病hcv9jop7ns2r.cn 欲壑难填是什么意思hcv7jop5ns6r.cn
流口水什么原因hcv8jop7ns3r.cn ckd医学上是什么意思hcv7jop5ns3r.cn 半套什么意思fenrenren.com 大肠在人体什么位置图hcv8jop8ns4r.cn 杨玉环属什么生肖hcv7jop7ns3r.cn
甜茶为什么叫甜茶xianpinbao.com 行李为什么叫行李hcv8jop1ns5r.cn 鹅喜欢吃什么食物hcv8jop3ns9r.cn 狗狗假孕是什么症状hcv7jop6ns0r.cn 什么地方helloaicloud.com
百度