中国最长的河流是什么河| 什么叫囊肿| 经血是什么血| skg是什么品牌| 反应是什么意思| 阿玛尼是什么意思| 渐冻症是什么| 李白和杜甫并称什么| 无缘无故头疼是什么原因| 灰指甲用什么药最有效| 什么弟什么兄| 天枢是什么意思| 阳光是什么颜色| 为什么崴脚了休息一晚脚更疼| 军校是干什么的| 折耳猫是什么| 竣字五行属什么| bally什么牌子| 腹部淋巴结肿大是什么原因| 屙是什么意思| 过问是什么意思| 指甲变空是什么原因| 5月16日是什么星座| 梦到自己老公出轨是什么意思| 吃什么长个子最快| 树叶像什么比喻句| 蚊虫叮咬红肿用什么药快速消肿| 心电图hr是什么意思| 女性肾虚吃什么补最好最快| 立场是什么意思| 直辖市是什么级别| 叉烧炒什么菜好吃| 早餐吃什么最营养| 心跳的快是什么原因| 姜为什么不能晚上吃| nasa是什么意思| 发烧拉肚子吃什么药| 獐是什么动物| 面粉是什么粉| 低压高有什么症状| 女人梦到蝎子什么征兆| 石榴石什么颜色的最好| 吃什么去除体内湿热| 结核t细胞阳性说明什么| 胃溃疡是什么意思| 拉肚子吃什么水果| 姿态万千的意思是什么| b超属于什么科室| 401什么意思| 6是什么意思| 受控是什么意思| 胸部发炎是什么症状| 血铅是什么| 里急后重吃什么药| 水逆是什么| 普陀山求什么最灵验| 女性尿频尿急是什么原因| 蚕蛾吃什么| 孩子病毒感染吃什么药| 皇家礼炮是什么酒| 为什么分泌物是褐色的| 甲亢病吃什么药效果好| 裸眼视力是什么意思| 蔷薇是什么意思| 刺猬爱吃什么| 1934年属什么生肖| 尿酸高的人不能吃什么| 吃什么能养肝护肝| 什么公主| 胃酸过多吃点什么食物比较好| 梦到和婆婆吵架是什么意思| 正常白带是什么味道| 本家是什么意思| 取环是什么意思| 勃起功能障碍吃什么药| 吃什么去湿气| 汗水多是什么原因| ft什么单位| 人为什么会有头皮屑| 扁桃体发炎是什么引起的| 喜欢喝冰水是什么原因| 什么是腹式呼吸的正确方法| 上火吃什么| 条形码的数字代表什么| 释迦摩尼是什么意思| 11.24是什么星座| 糖类抗原199偏高是什么原因| 头发为什么会变白| 云字属于五行属什么| 为什么要长征| 尺码m是什么意思| 孩子气是什么意思| 圣诞节礼物什么时候送| 蓝桉什么意思| premier是什么牌子| 必迈跑鞋什么档次| 双氧奶是什么| 过敏吃什么药最有效| 热结旁流是什么意思| 糖尿病为什么治不好| 舌吻有什么好处| 什么药可以降尿酸| 义眼是什么意思| 鼻涕黄粘稠是什么原因| 机不可失的下一句是什么| 四月二十八什么星座| 送命题是什么意思| 咪咪是什么| 淼念什么| 皮肤为什么会变黑| 脸颊两侧长斑是什么原因怎么调理| 嗓子发炎吃什么消炎药| 沙龙是什么| 甲是什么生肖| 下头是什么意思| 酒量越来越差什么原因| 物色是什么意思| 印度洋为什么叫印度洋| 什么是电汇| 肺热吃什么中成药| 内痔有什么症状| 例假提前半个月是什么原因造成的| 淘宝什么时候有活动| 三月十五日是什么星座| 黑米是什么米| 三体讲的是什么| 中国精神是指什么| 后背痒是什么原因| 读书心得是什么意思| 有时候会感到莫名的难过是什么歌| 什么叫数字货币| 五行什么克金| 大便颜色发绿是什么原因| 子宫脱垂是什么症状| 鸡眼长什么样子| 喝山楂水有什么好处和坏处| mr是什么意思| 梦见旅游是什么意思| 结膜炎滴什么眼药水| 脖子短适合什么发型| 休克是什么意思| 卷帘大将是干什么的| 胃窦隆起是什么意思| 鸡涌是什么意思| 是什么有什么| 梦见参加葬礼是什么意思| 无精是什么原因造成的| 全友床垫属于什么档次| 查血挂什么科| 腾空是什么意思| 十二月二号是什么星座| 藕粉是什么颜色| 摩羯和什么星座最配| 维生素是什么| 什么鸡| iwc手表是什么牌子| 唇裂是什么原因造成的| 三联律是什么意思| 心阳虚吃什么药| 宫外孕有什么症状| 同字五行属什么| 尿糖弱阳性是什么意思| 为什么要延迟退休| 一什么枝条| 雪松香是什么味道| 胰腺炎适合吃什么食物| 5月27是什么星座| 为什么不能踩死蜈蚣| 1981年是什么年| 一什么野花| luxury什么牌子| 阿尔山在内蒙古什么地方| 热血病是什么病| 薄姬为什么讨厌窦漪房| 中国是什么人种| 疖子是什么| nlp是什么| 梨状肌综合征吃什么药| 烤油边是什么| 鳄鱼是什么动物| 喝黑芝麻糊有什么好处| 枭印什么意思| 康复治疗技术是什么| 植脂末是什么东西| 什么叫抗体阳性| 匙仁是牛的什么部位| 低血糖有什么危害| 领结婚证需要准备什么| 遗留是什么意思| 姜子牙为什么没有封神| 什么样的莲蓬| 胃不好吃什么养胃| 香字五行属什么| 牙疼是什么原因| 手脚发胀是什么前兆| 富豪是什么意思| 白塞病是什么病| them什么意思| 什么情况下安装心脏起搏器| 什么是管制| 长生殿讲的是什么故事| 床虱咬了要擦什么药膏| 肉桂粉是什么做的| 细菌是什么生殖| 牛黄清心丸适合什么人群吃| 脂蛋白a高吃什么能降下来| 肝病挂什么科| 吃完饭就拉肚子是什么原因| 什么是跨境电商| 早晨起来口干舌燥是什么原因| 一国两制什么时候提出的| 格桑花的花语是什么| 什么牌子的洗衣机好| 三月是什么生肖| 极性什么意思| 819是什么意思| spo2是什么意思| 打破伤风挂什么科| 耳朵里痒是什么原因| 属羊的跟什么属相犯冲| 吃什么食物补铁| 碳14呼气试验阳性是什么意思| 玉屏风颗粒主治什么| 乐哉是什么意思| 耳闷耳堵是什么原因引起的| 狗尾续貂是什么意思| 尿道尿血是什么原因| 蚊虫叮咬过敏用什么药| 艾滋病前期有什么症状| 祛斑什么季节做最好| 梦见别人拉屎是什么意思| hpv56阳性是什么意思| 发炎不能吃什么东西| 什么是品牌| 冒泡是什么意思| 水痘开始痒了说明什么| 10月15号是什么星座| 上升水瓶座为什么可怕| 自尊是什么意思| 视力矫正是什么意思| 天天晚上睡觉做梦是什么原因| 石膏的主要成分是什么| 吃什么能降胆固醇| 牵引是什么意思| 小候鸟是什么意思| 什么是酵素| 属猴的什么命| 摩羯座是什么象星座| 押韵什么意思| 感觉心慌是什么原因| 高血压不能吃什么水果| 无妄之灾什么意思| 鸡皮肤是什么原因引起的| swisse是什么意思| 下午头晕是什么原因引起的| 什么水果低糖| 纯净水和矿泉水有什么区别| 中暑头晕吃什么药| 玄胡又叫什么| 尿道感染吃什么消炎药| 梦见生了个儿子是什么意思| five是什么意思| 肛门周围痒是什么原因| 中风什么症状| 百度
 

百度 此前有消息称,微软可能正在开发新一代Xbox精英手柄,并且微软于去年12月提交的可调节摇杆灵敏度的专利,可能将会应用到新一代Xbox精英手柄上。

From in-spreadsheet machine learning to terabyte sized DataFrames, learn how to stop fighting your tools and focus on solving problems.



Sponsored Content

 

 
8-Ways-to-Scale-Data-Science
 

How much time do you spend fighting your tools instead of solving problems? Every data scientist has been there: downsampling a dataset because it won’t fit into memory or hacking together a way to let a business user interact with a machine learning model.

The ideal environment gets out of the way so you can focus on the analysis. This article covers eight practical methods in BigQuery designed to do exactly that, from using AI-powered agents to serving ML models straight from a spreadsheet.

 

1. Machine Learning in your Spreadsheets

 

 

Machine Learning in your Spreadsheets
BQML training and prediction from a Google Sheet

 

Many data conversations start and end in a spreadsheet. They’re familiar, easy to use, and great for collaboration. But what happens when your data is too big for a spreadsheet, or when you want to run a prediction without writing a bunch of code? Connected Sheets helps by letting you analyze billions of rows of BigQuery data from the Google Sheets interface. All calculations, charts, and pivot tables are powered by BigQuery behind the scenes.

Taking it a step further, you can also access models you’ve built with BigQuery Machine Learning (BQML). Imagine you have a BQML model that predicts housing prices. With Connected Sheets, a business user could open a Sheet, enter data for a new property (square footage, number of bedrooms, location), and a formula can call a BQML model to return a price estimate. No Python or API wrangling needed - just a Sheets formula calling a model. It’s a powerful way to expose machine learning to non-technical teams.

 

2. No Cost BigQuery Sandbox and Colab Notebooks

 

Getting started with enterprise data warehouses often involves friction, like setting up a billing account. The BigQuery Sandbox removes that barrier, letting you query up to 1 terabyte of data per month. No credit card required. It’s a great, no-cost way to start learning and experimenting with large-scale analytics.

As a data scientist, you can access your BigQuery Sandbox from a Colab notebook. With just a few lines of authentication code, you can run SQL queries right from a notebook and pull the results into a Python DataFrame for analysis. That same notebook environment can even act as an AI partner to help plan your analysis and write code.

 

3. Your AI-Powered Partner in Colab Notebooks

 

 

Your AI-Powered Partner in Colab Notebooks
Data Science Agent in a Colab Notebook (sequences shortened, results for illustrative purposes)

 

Colab notebooks are now an AI-first experience designed to speed up your workflow. You can generate code from natural language, get automatic error explanations, and chat with an assistant right alongside your code.

Colab notebooks also have a built-in Data Science Agent. Think of it as an ML expert you can collaborate with. Start with a dataset - like a local CSV or a BigQuery table - and a high level goal, like “build a model to predict customer churn”. The agent creates a plan with suggested steps (e.g. data cleaning, feature engineering, model training) and writes the code.

And you are always in control. The agent generates code directly in notebook cells, but doesn’t run anything on its own. You can review and edit each cell before deciding what to execute, or even ask the agent to rethink its approach and try different techniques.

 

4. Scale your Pandas Workflows with BigQuery DataFrames

 

Many data scientists live in notebooks and use pandas DataFrames for data manipulation. But there’s a well-known limit: all the data you process needs to fit into your machine’s memory. MemoryError exceptions are all too common, forcing you to downsample your data early on.

This is the exact problem BigQuery DataFrames solves. It provides a Python API intentionally similar to pandas. Instead of running locally, it translates your commands into SQL and executes them on the BigQuery engine. Meaning you can work with terabyte-scale datasets from your notebook, with a familiar API, and no worries about memory constraints. The same concept applies to model training, with a scikit-learn-like API that pushes model training to BigQuery ML.

 

5. Spark ML in BigQuery Studio Notebooks

 

 

Spark ML in BigQuery Studio Notebooks
Sample Spark ML notebook in BigQuery Studio

 

Apache Spark is a useful tool from feature engineering to model training, but managing the infrastructure has always been a challenge. Serverless for Apache Spark lets you run Spark code, including jobs using libraries like XGBoost, PyTorch, and Transformers, without having to provision a cluster. You can develop interactively from a notebook directly within BigQuery, letting you focus on model development, while BigQuery handles the infrastructure.

You can use Serverless Spark to operate on the same data (and the same governance model) in your BigQuery warehouse.

 

6. Add External Context with Public Datasets

 

 

Add External Context with Public Datasets
Top 5 trending terms in the Los Angeles Area in early July 2025

 

Your first-party data tells you what happened, but can’t always explain why. To find that context, you can join your data with a large collection of public datasets available in BigQuery.

Imagine you’re a data scientist for a retail brand. You see a spike in sales for a raincoat in the Pacific Northwest. Was it your recent marketing campaign, or something else? By joining your sales data with the Google Trends dataset in BigQuery, you can quickly see if search queries for “waterproof jacket” also surged in the same region and period.

Or let’s say you’re planning a new store. You can use the Places Insights dataset to analyze traffic patterns and business density in potential neighborhoods, layering it on top of your customer information to choose the best location. These public datasets let you build richer models that account for real-world factors.

 

7. Geospatial Analytics at Scale

 

 

Geospatial Analytics at Scale
BigQuery Geo Viz map of a hurricane, using color to indicate radius and wind speed

 

Building location-aware features for a model can be complex, but BigQuery simplifies this by supporting a GEOGRAPHY data type and standard GIS functions within SQL. This lets you engineer spatial features right at the source. For example, if you are building a model to predict real estate prices, you could use a function like ST_DWithin to calculate the number of public transit stops within a one mile radius for each property. You can then use that value directly as input to your model.

You can take this further with Google Earth Engine integration, which brings petabytes of satellite imagery and environmental data into BigQuery. For that same real estate model, you could query Earth Engine’s data to add features like historical flood risk or even density of tree cover. This helps you build much richer models by augmenting your business data with planet-scale environmental information.

 

8. Make Sense of Log Data

 

Most people think of BigQuery for analytical data, but it’s also a powerful destination for operational data. You can route all of your Cloud Logging data to BigQuery, turning unstructured text logs into queryable resources. This allows you to run SQL across logs from all your services to diagnose issues, track performance, or analyze security events.

For a data scientist, this Cloud Logging data is a rich source to build predictions from. Imagine investigating a drop in user activity. After identifying an error message in the logs, you can use BigQuery Vector Search to find semantically similar logs, even if they don’t contain the exact same text. This could help reveal related issues, like “user token invalid” and “authentication failed”, that are part of the same root cause. You could then use this labeled data to train an anomaly detection model that flags patterns proactively.

 

Conclusion

 

Hopefully, these examples spark some new ideas for your next project. From scaling pandas DataFrames to feature engineering with geography data, the goal is to help you work at scale with familiar tools.

Ready to give one a shot? You can start exploring at no cost today in the BigQuery Sandbox!

Author: Jeff Nelson, Developer Relations Engineer

 
 



缺德是什么意思 丈夫的弟弟叫什么 风疹病毒是什么 浇去掉三点水读什么 自慰用什么
凉茶是什么茶 荨麻疹是什么引起的 毛囊炎是什么原因引起的 人为什么要有性生活 吃什么减肥
vmd是什么意思 男性尿道口流脓吃什么药最管用 多普勒超声检查是什么 甲级战犯是什么意思 口苦口臭吃什么药效果最佳
学生近视配什么镜片好 zzegna是什么牌子价格 听调不听宣什么意思 育红班是什么意思 自相矛盾的道理是什么
梦见表姐是什么意思inbungee.com 腰穿是什么意思bfb118.com wh是什么颜色hcv9jop2ns7r.cn 六月十三日是什么星座hcv8jop7ns3r.cn 6.30什么星座hcv9jop1ns4r.cn
什么克风hcv7jop9ns2r.cn wba是什么意思hcv8jop2ns3r.cn 6月9日是什么星座hcv8jop9ns2r.cn 胳膊肘发黑是什么原因hcv7jop5ns1r.cn 为什么眼睛有红血丝hcv8jop7ns6r.cn
兑卦代表什么yanzhenzixun.com 异麦芽酮糖醇是什么hcv9jop6ns9r.cn 表示什么意思hcv8jop1ns6r.cn 脑供血不足吃什么中药adwl56.com 生蛇是什么原因引起的jiuxinfghf.com
人造革是什么材质hcv9jop1ns0r.cn 无与伦比是什么意思hcv8jop9ns6r.cn 舌头生疮是什么原因引起的hcv9jop0ns4r.cn 舌苔白吃什么药效果好gangsutong.com 新生儿前面头发稀少是什么原因hcv8jop5ns1r.cn
百度