心阴虚吃什么中成药| 四个龙念什么| 唐筛是检查什么| 鬼什么虎| sweet什么意思| 耳鸣是什么感觉| 阴唇黑是什么原因| 一月27日是什么星座| 甲鱼吃什么的| 38岁属什么| 慢性胃炎伴胆汁反流是什么意思| 区委书记是什么级别| 为什么会排卵期出血| 肝功能2项是指什么| 孕妇贫血有什么症状| 鸭子什么时候下蛋| 8月10号是什么星座| 桑葚搭配什么泡水喝最好| 处暑吃什么| 牙齿涂氟是什么意思| 神经性呕吐是什么症状| 胎盘1级什么意思| 霉菌性阴炎是什么原因引起的女| 上钟什么意思| 四字五行属什么| 专科和本科有什么区别| 提高免疫力吃什么食物| 立普妥是什么药| 长方形纸能折什么| 惊什么万什么| 茶艺师是做什么的| 石斛与什么搭配最好| 腰椎间盘膨出是什么意思| 为什么会得霉菌感染| 睡几个小时就醒了是什么原因| 脚后跟麻木是什么原因| 葛根长什么样子图片| 上呼吸道感染吃什么药| 小便出血是什么原因| 肌腱属于什么组织| 胃气上逆吃什么中成药| 蜱虫怕什么| 陈皮泡水喝有什么功效和作用| 甄嬛传什么时候拍的| 微信转账为什么要验证码| lca是什么意思| 取保候审需要什么条件| 肝硬化是什么引起的| 什么叫支原体感染| 男生什么时候会有生理反应| 鱼缸摆放什么位置最佳| 母亲节送母亲什么礼物| 身上长白色的斑点是什么原因| 公招是什么意思| 十字架代表什么| lo什么意思| 月和什么有关| neo什么意思| 姑息性化疗什么意思| 孕早期适合吃什么食物| 发物是什么| 现是什么生肖| 除服是什么意思| 蒙脱石散是什么成分| 什么叫白癜风| mixblu是什么牌子| 九月十五日是什么星座| 三点水山今读什么| 4岁小孩流鼻血是什么原因| 睡觉口干舌燥什么原因| 怀孕期间吃什么对胎儿发育好| 手指甲出现竖纹是什么原因| yesido是什么意思| 肠道为什么会长息肉| 肉麻是什么意思| 弯弯是什么意思| 肉桂是什么| 什么是卫星| 常吃木耳有什么好处和坏处| 什么是光合作用| gb10769是什么标准| 君子兰用什么土最好| 陋习什么意思| 杏林春暖的杏林指什么| 小巧思什么意思| 女生说6524是什么意思| 乙肝阻断针什么时候打| 脚一直出汗是什么原因| l读什么| 水里有什么| 高碱性食物都有什么| 看见蛇过马路什么征兆| 双鱼女和什么星座最配| 男人下面有异味什么原因| boy是什么牌子| pdrn是什么| 铂字五行属什么| cnm是什么意思| 溺水是什么意思| 泌尿系统感染什么症状| 轻度贫血有什么症状| 好老公的标准是什么| 踩雷是什么意思| 有心火是什么症状| 碘化银什么颜色| 女孩第一次来月经需要注意什么| 眼皮老跳是什么原因| 血小板下降是什么原因| 舅舅和外甥女是什么关系| 血红蛋白是什么| 为什么有的| 蛇形分班是什么意思| 女人白带多什么原因| 中午吃什么饭| 国家栋梁指的是什么官| 什么使我快乐| 1998年出生属什么生肖| 自传是什么意思| 世界杯是什么时候| 发烧一直不退是什么原因| 早上起来不晨勃是什么原因| 陈皮有什么功效作用| 苗子是什么意思| 益字五行属什么| 摄入是什么意思| 速度是70迈心情是自由自在什么歌| 入睡难一般是什么原因造成的| 鱼能吃什么| 奶茶喝多了有什么危害| horns是什么意思| 为什么一直下雨| 可心是什么意思| 小松鼠吃什么食物| 花花世界是什么生肖| 贵州有什么山| 深水炸弹是什么| 黄鼠狼是什么科| 什么是管状腺瘤| 道场是什么意思| 慢性非萎缩性胃炎伴糜烂吃什么药| 什么辣椒又香又辣| 咳嗽是什么原因引起的| 三合生肖是什么意思| 陈旧性骨折是什么意思| 什么是心衰病| 醋精是什么| 右胸上方隐痛什么原因| 梦见大狼狗是什么意思| 什么是寓言故事| 开车压到猫有什么预兆| burberry是什么牌子| 5.29什么星座| 偏旁部首是什么意思| 74年属什么| 男性尿道口流脓吃什么药最管用| 摩羯是什么星座| 天启是什么意思| 冬天可以干什么| 乖乖是什么意思| 香菜什么时候种最合适| 为什么会有霉菌性阴道炎| cyl是什么意思| 什么是透析| bp是什么职位| ihc是什么意思| 广西有什么市| 同房是什么意思| 高贵的什么| 霉菌性阴道炎用什么栓剂| 过氧化氢弱阳性什么意思| 问候是什么意思| 违反禁令标志指示什么意思| 重力是什么| 龙抄手是什么| 诸君是什么意思| 5月11号是什么星座| 认知什么意思| 夏天木瓜煲什么汤最好| 优势卵泡是什么意思| 耳鸣是什么原因导致的| 高玩是什么意思| 火龙果什么人不能吃| 血脂高挂什么科| 久咳不愈是什么原因| 群像是什么意思| 检查胃挂什么科| 腺肌症有什么症状| 德字五行属什么| 十个一是什么| 女人吃莲藕有什么好处| 嗓子疼吃什么食物好| 北极和南极有什么区别| 便秘吃什么可以调理| 腋下淋巴结肿大挂什么科| 井柏然原名叫什么| 尿道炎症吃什么药好| 前列腺液是什么样子| 花瓣是什么意思| 叶酸有什么作用| 1月生日是什么星座| 全程c反应蛋白高说明什么| 张艺谋为什么不娶巩俐| 什么沐浴露好用| 铁是补什么的| 黄茶是什么茶| 三番四次是什么生肖| 舌苔发白是什么病的前兆| 吃什么能升血压| 凯字五行属什么| 尖牙什么时候换| 梦见别人掉牙齿是什么征兆| 会阴是什么| 吃酒酿有什么好处| acs是什么意思| 一月二十三号是什么星座| 流产后吃什么食物| 猴年马月是什么时候| 慢性胰腺炎吃什么药| 果可以加什么偏旁| 鹿下面一个几字读什么| 长脸适合什么发型女| 番薯是什么| 声讨是什么意思| 弊是什么意思| 失眠吃什么药好| 往生咒是什么意思| 致密是什么意思| 舌苔厚腻发白是什么原因| 谁也不知道下一秒会发生什么| 姓名字号是什么意思| 心慌气短是什么原因| 百合和什么一起煮可以治失眠| 真维斯属于什么档次| 什么叫杵状指| ye是什么颜色| 龟头炎吃什么药| 4.15是什么星座| 孕早期吃什么水果| 月经来了吃什么好| 最长的河流是什么河| 不以为意什么意思| 丰盈是什么意思| 羊蛋是什么| 白案是什么意思| 什么的沙滩| 鲁蛇是什么意思| 胎儿股骨长是什么意思| 房颤吃什么药效果最好| 什么叫菩提| 什么东西泡水喝降血压| daogrs是什么牌子| 男性尿道炎是什么原因引起的| 孩子喝什么牛奶有助于长高| 贵州有什么好吃的| 决明子配什么喝最减肥| 九出十三归是什么意思| 婴儿坐高铁需要什么证件| 果实是什么意思| 吃什么对肺好| 小便短赤是什么症状| dq什么意思| 鸡胸是什么| 4月3号是什么星座| 梦到男孩子是什么意思| 百度
 

北京现代名图现车直降4万 裸车 分期 一键启动

百度 卑弥呼是恶魔,而且拥有超自然力量在游戏中,卑弥呼并非是一位殉道者,她是一位残忍的统治者,并且拥有操纵天气的力量。

Becoming a professional data scientist may not be as easy as "1... 2... 3...", but these 10 steps can be your self-learning roadmap to kickstarting your future in the exciting and ever-expanding field of data science.



Image by the author (made using?Canva).

Data science is one of the rapidly growing fields that demands that a data scientist grows up daily, and I can’t see this demand slowing down anytime soon. It is an interdisciplinary field that can help us analyze the data around us to make our life better and our future brighter.

Luckily, becoming a data scientist does not require a degree. As long as you are open to learning new things and willing to put in the effort and time, you can become a data scientist.

The question now is,?where to start?

“The beginning is perhaps more difficult than anything else, but keep heart, it will turn out all right.”

―?Vincent van Gogh

The internet is full of tutorials about all the details of every data science aspect, such as machine learning basics, natural language processing, speech recognition, and all kind of amazing data science magic.

But,

For a beginner, the amount of information can be overwhelming and lead someone to give up before they even start.

What could help is having a structured roadmap that clearly lays out what you need to learn and the order that you should learn to become a data scientist.

In this article, I will lay out a 10-step roadmap from start to finish of concepts you need to cover along your data science learning journey.

 

Step №1: Programming

 

If you’re new to the technical field, then programming would be the best place to start. Currently, the two programming languages used most in data science are Python and R.

  • R:?A programming language for statistical computing. R is widely for developing statistical software and data analysis.
  • Python:?A high-level, general-purpose programming language. Python is widely used in many applications and fields, from simple programming to quantum computing.

Because Python is a beginner-friendly programming language, I find it a great place to start with data science and maybe more fields in the future. Due to Python's popularity, there are many resources available to learn it independently of your goal application field.

Some of my favorite Python learning resources are?CodeAcademy,?Google Classes,?Learn Python the Hard Way.

However, if you decide to go with R, both?Coursera?and?edX?have great courses that you can audit for free.

Some of you might already know how to program and might be transferred to data science from another technical field. In that case, you can skip this step and move forward to the next step of the journey.

 

Step №2: Databases

 

The heart of data science is?data. You can think of data science as the art of telling a story using data.

Whenever you work on a data science project, you will need to have data to analyze, visualize, and build a valid project. This data are often stored in some database.

An essential step to standing out as a data scientist is to interact and communicate with databases effectively. If you could design a simple database, then this will take you to the next level.

To communicate with a database, you will need to speak its language. That is SQL. SQL stands for Structured Query Language and is used to communicate with a database.

My favorite resources to learn SQL are?CodeAcademy,?Khan Academy, and interactive learning,?SQLCourse.

 

Step №3: Math

 

The core of data science is math. To understand how the different concepts of data science function, you need to have a basic understanding of the math behind them.

I know math is one thing that could make some backup from pursuing a career in data science.

But,

You need to understand the basics of probability theory, statistics, and linear algebra to comprehend data science. However, most tools you would use in your career will eliminate implementing the math itself in your projects.

So, you need to understand how it works, how, and when to use it.

Don’t let math intimidate you from exploring the world of data science. I would say it’s well worth it. There are some helpful materials on Coursera that can help you tackle the math you need.

 

Step №4: Version Control

 

In software development and data science, one of the most important concepts to master — or try to — is version control.

Whenever you work on a data science project, you will need to write different code files, explore datasets, and collaborate with other data scientists. Managing, all changes in the code, is done via version control, namely, using Git.

Git is a version control system used to track changes in source code during the software development process. Git was built to coordinate work among a group of programmers or to be used to track changes in any set of files by a single programmer.

Although Git is a system, some websites allow you to use Git easily without needing to interact much with the command line — you will eventually move to the command line eventually, though — such as?GitHub?or?GitLab.

Luckily, there are many resources to help you understand the inner functionality of Git; my top choices are?BitBucket Learn Git Tutorials?and?this lecture from the Harvard CS50 course.

 

Step №5: Data Science Basics

 

Data science is an extensive term, as it includes different concepts and technologies. But before you take a deep dive into the big sea of data science, you need to familiarize yourself with some basics first.

There are important skills you need to develop and work on to become a successful data scientist, for example:

  1. Finding datasets:?there are two ways to kickstart any data science project: you either have a dataset you want to use to build a project, or you have an idea and need to find a dataset for. Exploring datasets and choosing the right one for your project is an important skill to obtain.
  2. Science communication:?as a data scientist, you will need to communicate with a general audience to deliver your process and findings. So, you will need to develop your science communication skills and explain complex concepts using simple terms.
  3. Effective visualization:?the only way to validate your findings is to visualize them. Visualization plays a big role in data science, from exploring your data to delivering your results. Getting familiar with effective visualization of data can save you tons of time and effort during your project.

 

Step №6: Machine Learning Basics

 

So, you worked on your programming skills, brushed up your math, and dived into databases. You’re now ready to start the fun part, applying what you learned so far to build your first projects.

Machine learning basics is the place to start. Here is when you start learning and exploring basic machine learning algorithms and techniques, such as linear and logistic regression, decision trees, Naive Bayes, and support vector machines (SVM).

Here where you also start discovering the different Python or R packages to deal with and implement your data. You will get to use?Scikit-learn,?Scipy, and?Numpy.

You will learn how to clean up your data to have more accurate positions and results. This is the part where you’ll get to experience what you can do with data science and will be able to see the impact the field has on our daily lives.

The best place to start learning about the different aspects of machine learning is the various article on Towards Data Science.

 

Step №7: Time Series and Model Validation

 

It’s time to dive deeper into machine learning. Your data is not going to be stationary; it’s often related to time somehow. Time series are data points ordered based on time.

Most commonly, time series are sequences of data taken at successive equally spaced points in time. Making them discrete-time data. Time series shows you how time changes your data. This allows you to gain insights about trends, periodicity in the data and predict the data's future behavior.

When dealing with time series, you will need to work on two main parts:

  1. Analyzing time-series data.
  2. Forecasting time series data.

Building models to predict future behavior is not enough. You need to validate this model's correctness. Here’s where you will learn how to build and test models efficiently.

Moreover, you will learn how to estimate the threshold of error for each project and how to keep your models within the acceptable ranges.

 

Step №8: Neural Networks

 

Neural networks (Artificial Neural Networks or ANN) are a biologically-inspired programming paradigm that enables a computer to learn from observational data.

ANNs started as an approach to mimic the human brain's architecture to perform different learning tasks. For an ANN to resemble the human brain, it was designed to contain the same components a human cell has.

So, ANN contains a collection of neurons, with each representing a node connected to another via links. These links correspond to the biological axon-synapse-dendrite connections. Moreover, each of these links has a weight that determines the strength one node has on another.

Learning ANN enables you to tackle a wider range of tasks, including recognizing handwriting, pattern recognition, and face identification.

ANN represents the basic logic you need to know to proceed to the next step in your data science journey, deep learning.

 

Step №9: Deep Learning

 

Neural networks are paradigms that power deep learning. Deep learning represents a powerful set of techniques that harness the learning power of neural networks.

You can use neural networks and deep learning to tackle the best solutions to many problems in various fields, including image recognition, speech recognition, and natural language processing.

By now, you’ll be familiar with many Python packages that deal with different aspects of data science. In this step, you will get the chance to try popular packages such as?Keras?and?TensorFlow.

Also, by this step, you will be able to read recent research advances in data science and maybe develop your own.

 

Step №10: Natural language Processing

 

You’re almost at the end. You can already see the finish sign. You have gone through many theoretical and practical concepts so far, from simple math to complex deep learning concepts.

So,?what’s next?

My favorite sub-field of data science is natural language processing (NLP). Natural language processing is an exciting branch that enables you to use the power of machine learning to “teach” the computer to understand and process human languages.

This will include speech recognition, text-to-speech application (and vise versa), virtual assistance (like Siri and BERT), and all kinds of different conversational bots.

Image by the author (made using?Canva).

 

Conclusion

 

Here we are at the “end” of the road. End here between quotation, because just like any other technology-related field, there’s no end. The field is developing rapidly because new algorithms and techniques are under research as I type this article.

So, being a data scientist means you will be in a continuous learning stage. You will be developing your knowledge and your style as you go. You will probably feel more attracted to a specific sub-field than another and dig even deeper and maybe specialize in that sub-field.

The most important thing to know as you embark on this journey is, you can do it. You need to be open-minded and dedicate enough time and effort to achieve your end goals.

Original. Reposted with permission.

 

Related:



sla是什么 阳上人是什么意思 突然头晕是什么情况 沙弗莱是什么宝石 相向是什么意思
伏羲和女娲是什么关系 足字旁的字与什么有关 911是什么 身在其位必谋其职是什么意思 婴儿大便绿色是什么原因
爱慕内衣什么档次 男人为什么会得前列腺炎 心绞痛什么症状 18度穿什么衣服合适 花木兰代表什么生肖
肠胃不好吃什么水果好 执子之手与子偕老什么意思 兔唇是什么原因造成的 做好自己是什么意思 落花生的落是什么意思
中暑的症状是什么hcv7jop7ns0r.cn 小灶是什么意思hcv9jop3ns2r.cn 什么是假声hcv8jop6ns7r.cn 总做梦是什么原因hcv9jop6ns9r.cn 肠胃不好喝什么茶hcv8jop4ns4r.cn
意淫是什么hanqikai.com 现在执行死刑用什么方法gangsutong.com 言尽于此是什么意思hcv9jop8ns0r.cn 星星是什么的眼睛hcv8jop1ns2r.cn 喜用神什么意思hcv8jop5ns1r.cn
化疗之后吃什么好hcv9jop3ns6r.cn 后背发热是什么原因hcv9jop7ns3r.cn 乌云为什么是黑色的hcv8jop5ns4r.cn 康庄大道什么意思hcv7jop9ns2r.cn 夏令时是什么hcv9jop0ns1r.cn
月经期间吃什么好hcv7jop9ns0r.cn 1953属什么生肖hcv8jop1ns2r.cn 决堤什么意思hcv8jop3ns9r.cn 什么病才吃阿昔洛韦片hcv7jop9ns8r.cn 人面桃花相映红是什么意思jingluanji.com
百度