甲亢什么意思| 小腹痛是什么原因| 过期的维生素c有什么用途| ufo是什么| 什么植物驱蚊效果最好| 古对什么| 猴魁属于什么茶| 吃什么掉秤快| 血糖高不能吃什么食物| 什么减肥药好使| 脂蛋白a高吃什么能降下来| 栀子对妇科有什么功效| lofter是什么意思| 为什么新疆人长得像外国人| 星座是什么意思| 1964年属什么| h代表什么意思| 71年猪是什么命| 龙虾吃什么食物| 兄长是什么意思| 女人梦见鬼是什么征兆| 结节是什么意思| 盐酸利多卡因注射作用是什么| 血糖高能吃什么菜| 女朋友生日送什么花| nyc是什么牌子| 维生素b2有什么功效| 1973年属牛的是什么命| 祛斑喝什么花茶最有效| 乳腺结节吃什么| 什么是情人| 奥美拉唑是什么药| 狼吞虎咽是什么生肖| 胃炎吃什么药好| brush什么意思| 什么是社恐| 斐乐属于什么档次| 西洋参适合什么人吃| 眼睛视力模糊是什么原因| 晚饭吃什么好| 一直呕吐是什么原因| 切除一侧输卵管对女性有什么影响| 发烧吃什么药| 瓦是什么的单位| 项链折了意味着什么| tct检查什么项目| 止语是什么意思| 手上起倒刺是缺什么| 压到蛇了是有什么预兆| 煲什么汤含蛋白质高| 中国信仰什么教| 驴血是什么颜色| 绿茶有什么好处| 邮政编码是什么意思| 初遇是什么意思| 为什么老打哈欠| 腿麻是什么原因引起的| 猫尿床是因为什么原因| 竖中指是什么意思| 跳蚤最怕什么东西| 车标是牛的是什么车| 睾丸是什么东西| dia是什么意思| 非典型腺细胞是什么意思| 儿童抗o高会引起什么病| 阿华田是什么饮料| 被蛇咬了挂什么科| 运动出汗多是什么原因| circle什么意思| 男人硬不起来是什么原因| 牙龈无缘无故出血是什么原因| 衣原体感染是什么病| 扭捏是什么意思| 开髓引流是什么| 相逢是什么意思| 慢热型是什么意思| 欲钱看正月初一是什么生肖| 嘛哩嘛哩哄是什么意思| dcr是什么意思| 倒签是什么意思| 无声无息是什么意思| 什么减肥药最安全| 三线炎有什么症状| 什么叫盗汗| 火红火红的什么| 耳鸣挂什么科| 阴虚是什么| 什么的爸爸| 得了幽门螺旋杆菌有什么症状| 强高是什么意思| 六味地黄丸有什么副作用| 睾丸疼痛吃什么药最好| 毛血旺是什么菜| 红酒兑什么好喝| 叶酸什么时候吃| 梦见参加葬礼是什么意思| 心悸吃什么中成药| 乳头经常痒是什么原因| 植物神经功能紊乱吃什么药| 变态什么意思| 头油是什么原因引起的| 好奇害死猫是什么意思| 药剂师是什么专业| 老是口腔溃疡是什么原因| 痔疮是什么病| 什么的树枝| 长智齿说明了什么原因| 为什么有两个六月| 低钾是什么原因造成的| 益母草有什么功效| 产妇月子吃什么下奶多| 双离合是什么意思| 双侧上颌窦炎是什么病| 85属什么生肖| 重度肠化是什么意思| 情人节送什么礼物好| 五朵玫瑰花代表什么意思| 眉毛长长是什么原因| 自闭什么意思| peek是什么材料| 蝉吃什么食物| 泌乳是什么意思| 耳浴10分钟什么意思| 什么的小院| 农历十月是什么星座| 左肾结石的症状是什么| 勃起困难吃什么药| 2.3什么星座| 脚掉皮是什么原因| 421是什么意思| 闲鱼转卖什么意思| 期货平仓是什么意思| 小月子可以吃什么水果| 大腿根部疼痛是什么原因| delvaux是什么牌子| 喝金银花有什么好处| 血糖高适合喝什么茶| 干燥综合症吃什么药| 为什么会宫颈糜烂| 狗狗肠胃炎吃什么药| 大悲咒是什么意思| 什么的身子| 脂肪肝吃什么中药| 预测是什么意思| 备孕是什么意思| 一月九号是什么星座| 脸上有癣用什么药膏好| 胆结石不能吃什么| 什么叫肾病综合征| 女性尿里带血是什么原因| 小孩掉头发是什么原因| 牙痛 吃什么药| 脚掌脱皮是什么原因| 牙龈痛吃什么药| 复方氨酚烷胺胶囊是什么药| 水逆退散是什么意思| 什么东西可以止痒| 柠檬不能和什么一起吃| 毒瘾发作有什么症状| 什么程度算精神出轨| 5月10号是什么日子| 05年属什么生肖| 音爆是什么| 灰指甲有什么特效药可以治好| 夏天怕热冬天怕冷是什么体质| 灵魂伴侣是指什么意思| 端午节什么时候吃粽子| 女性脚冰凉是什么原因| 来月经可以吃什么| 胡萝卜不能和什么一起吃| 子宫内膜炎有什么症状| 副乳是什么意思| 雪白的什么| 尿素是什么意思| 10月23号是什么星座| 血小板为什么会减少| butterfly什么意思| 什么照镜子里外不是人| 大黄鸭是什么牌子| 荷尔蒙爆发是什么意思| 副部级是什么级别| 925是什么意思| 黄帝是一个什么样的人| 打胰岛素有什么副作用| 子宫内膜炎是什么原因造成的| 脸红是什么原因引起的| 医学ca是什么意思| 房早有什么危害| 犄角旮旯是什么意思| 笔仙是什么| 猪油不凝固是什么原因| 用什么自慰| 自身免疫性疾病是什么意思| 类胡萝卜素主要吸收什么光| 乳房长斑点是什么原因| 尿不出来吃什么药| 过年给老人买什么| 简单明了是什么意思| 白带有血丝是什么情况| 静心什么意思| 世界上最大的动物是什么| 生化常规主要是检查什么的| 身上出冷汗是什么原因| 清明节与什么生肖有关| 精炼植物油是什么油| 腿弯疼是什么原因| 多囊卵巢综合征吃什么药| 现在是什么意思| 肾炎吃什么药| 血透是什么意思| 为什么来月经会有血块| 茄子炒什么好吃又简单| 空气栓塞取什么卧位| 食管反流什么症状| 节节草能治什么病| 四是什么生肖| 米加参念什么| 舌苔发白是什么情况| 烫伤用什么消毒| 怀孕后的分泌物是什么样的| 玺是什么意思| 木耳菜不能和什么一起吃| 小蜘蛛吃什么| 一厢情愿指什么生肖| 电离辐射是指什么| 双排是什么意思| 为什么会心梗| 阴道发臭是什么原因| 眼花缭乱的意思是什么| 胸口痛什么原因| 人头马是什么酒| 没谁了是什么意思| 骨折后吃什么好| 吃豆角中毒什么症状| 一九八八年属什么生肖| 辰龙是什么意思| 脑瘤早期什么症状| 干咳是什么原因引起的| 孩子脚后跟疼是什么原因| 红细胞偏低有什么危害| 口腔脱皮是什么原因引起的| 什么颜色最防晒| 尿蛋白三个加号吃什么药| 冻干粉是什么| 喉咙发炎不能吃什么食物| 殊途同归什么意思| 什么是性行为| 肺肿物是什么意思| 什么叫四大皆空| 九牛一毛是什么意思| 孕妇现在吃什么水果好| 喝酒后呕吐是什么原因| 2021年是什么命| 片仔癀为什么这么贵| 声线是什么意思| 为什么生化妊娠是好事| 临产是什么意思| 礼仪是什么| 金牛座是什么象星座| 肛门瘙痒用什么药好| 异位胰腺是什么意思| 古埃及是什么人种| 指南针为什么不叫指北针| 来大姨妈喝红糖水有什么作用| 百度
 

腊排骨炖什么好吃

百度 近年来,全省累计调减万亩低效甘蔗,发展热带水果、种桑养蚕、南药等替代产业;积极构建国家级、省级现代农业产业园梯次发展格局,截至目前,海南省级现代农业产业园已达54家,陵水国家现代农业产业园更是成为海南首个获批创建的国家现代农业产业园;制定实施《海南省特色农产品调优增效实施方案》,引导各市县调整产业结构,培育优势产业;推行互联网+农业,用现代化的互联网思维和技术对传统农业进行提升改造。

This is a no-nonsense overview of implementing a recurrent neural network (RNN) in TensorFlow. Both theory and practice are covered concisely, and the end result is running TensorFlow RNN code.



By Erik Hallstr?m, Deep Learning Research Engineer.

In this tutorial I’ll explain how to build a simple working Recurrent Neural Network in TensorFlow. This is the first in a series of seven parts where various aspects and techniques of building Recurrent Neural Networks in TensorFlow are covered. A short introduction to TensorFlow is available here. For now, let’s get started with the RNN!

What is a?RNN?

 
It is short for “Recurrent Neural Network”, and is basically a neural network that can be used when your data is treated as a sequence, where the particular order of the data-points matter. More importantly, this sequence can be of arbitrary length.

The most straight-forward example is perhaps a time-series of numbers, where the task is to predict the next value given previous values. The input to the RNN at every time-step is the current value as well as a state vector which represent what the network has “seen” at time-steps before. This state-vector is the encoded memory of the RNN, initially set to zero.


Schematic of a RNN processing sequential data over?time.

The best and most comprehensive article explaining RNN's I’ve found so far is this article by researchers at UCSD, highly recommended. For now you only need to understand the basics, read it until the “Modern RNN architectures”-section. That will be covered later.

Although this article contains some explanations, it is mostly focused on the practical part, how to build it. You are encouraged to look up more theory on the Internet, there are plenty of good explanations.

Setup

 
We will build a simple Echo-RNN that remembers the input data and then echoes it after a few time-steps. First let’s set some constants we’ll need, what they mean will become clear in a moment.

Generate data

 
Now generate the training data, the input is basically a random binary vector. The output will be the “echo” of the input, shifted echo_step steps to the right.

Notice the reshaping of the data into a matrix with batch_size rows. Neural networks are trained by approximating the gradient of loss function with respect to the neuron-weights, by looking at only a small subset of the data, also known as a mini-batch. The theoretical reason for doing this is further elaborated in this question. The reshaping takes the whole dataset and puts it into a matrix, that later will be sliced up into these mini-batches.


Schematic of the reshaped data-matrix, arrow curves shows adjacent time-steps that ended up on different rows. Light-gray rectangle represent a “zero” and dark-gray a?“one”.

Building the computational graph

 
TensorFlow works by first building up a computational graph, that specifies what operations will be done. The input and output of this graph is typically multidimensional arrays, also known as tensors. The graph, or parts of it can then be executed iteratively in a session, this can either be done on the CPU, GPU or even a resource on a remote server.

Variables and placeholders

The two basic TensorFlow data-structures that will be used in this example are placeholders and variables. On each run the batch data is fed to the placeholders, which are “starting nodes” of the computational graph. Also the RNN-state is supplied in a placeholder, which is saved from the output of the previous run.

The weights and biases of the network are declared as TensorFlow variables, which makes them persistent across runs and enables them to be updated incrementally for each batch.

The figure below shows the input data-matrix, and the current batch batchX_placeholder is in the dashed rectangle. As we will see later, this “batch window” is slided truncated_backprop_length steps to the right at each run, hence the arrow. In our example below batch_size = 3, truncated_backprop_length = 3, and total_series_length = 36. Note that these numbers are just for visualization purposes, the values are different in the code. The series order index is shown as numbers in a few of the data-points.


Schematic of the training data, the current batch is sliced out in the dashed rectangle. The time-step index of the datapoint is displayed.

Unpacking

Now it’s time to build the part of the graph that resembles the actual RNN computation, first we want to split the batch data into adjacent time-steps.

As you can see in the picture below that is done by unpacking the columns (axis = 1) of the batch into a Python list. The RNN will simultaneously be training on different parts in the time-series; steps 4 to 6, 16 to 18 and 28 to 30 in the current batch-example. The reason for using the variable names “plural”_”series” is to emphasize that the variable is a list that represent a time-series with multiple entries at each step.


Schematic of the current batch split into columns, the order index is shown on each data-point and arrows show adjacent time-steps.

The fact that the training is done on three places simultaneously in our time-series, requires us to save three instances of states when propagating forward. That has already been accounted for, as you see that the init_state placeholder has batch_size rows.

Forward pass

Next let’s build the part of the graph that does the actual RNN computation.

Notice the concatenation on line 6, what we actually want to do is calculate the sum of two affine transforms current_input * Wa + current_state * Wbin the figure below. By concatenating those two tensors you will only use one matrix multiplication. The addition of the bias b is broadcasted on all samples in the batch.


Schematic of the computations of the matrices on line 8 in the code example above, the non-linear transform arctan is?omitted.

You may wonder the variable name truncated_backprop_length is supposed to mean. When a RNN is trained, it is actually treated as a deep neural network with reoccurring weights in every layer. These layers will not be unrolled to the beginning of time, that would be too computationally expensive, and are therefore truncated at a limited number of time-steps. In our sample schematics above, the error is backpropagated three steps in our batch.

Calculating loss

This is the final part of the graph, a fully connected softmax layer from the state to the output that will make the classes one-hot encoded, and then calculating the loss of the batch.

The last line is adding the training functionality, TensorFlow will perform back-propagation for us automatically?—?the computation graph is executed once for each mini-batch and the network-weights are updated incrementally.

Notice the API call to sparse_softmax_cross_entropy_with_logits, it automatically calculates the softmax internally and then computes the cross-entropy. In our example the classes are mutually exclusive (they are either zero or one), which is the reason for using the “Sparse-softmax”, you can read more about it in the API. The usage is to havelogits is of shape [batch_size, num_classes] and labels of shape [batch_size].

Visualizing the?training

 
There is a visualization function so we can se what’s going on in the network as we train. It will plot the loss over the time, show training input, training output and the current predictions by the network on different sample series in a training batch.

Running a training?session

 
It’s time to wrap up and train the network, in TensorFlow the graph is executed in a session. New data is generated on each epoch (not the usual way to do it, but it works in this case since everything is predictable).

You can see that we are moving truncated_backprop_length steps forward on each iteration (line 15–19), but it is possible have different strides. This subject is further elaborated in this article. The downside with doing this is that truncated_backprop_length need to be significantly larger than the time dependencies (three steps in our case) in order to encapsulate the relevant training data. Otherwise there might a lot of “misses”, as you can see on the figure below.


Time series of squares, the elevated black square symbolizes an echo-output, which is activated three steps from the echo input (black square). The sliding batch window is also striding three steps at each run, which in our sample case means that no batch will encapsulate the dependency, so it can not?train.

Also realize that this is just simple example to explain how a RNN works, this functionality could easily be programmed in just a few lines of code. The network will be able to exactly learn the echo behavior so there is no need for testing data.

The program will update the plot as training progresses, shown in the picture below. Blue bars denote a training input signal (binary one), red bars show echos in the training output and green bars are the echos the net is generating. The different bar plots show different sample series in the current batch.

Our algorithm will fairly quickly learn the task. The graph in the top-left corner shows the output of the loss function, but why are there spikes in the curve? Think of it for a moment, answer is below.


Visualization of the loss, input and output training data (blue, red) as well as the prediction (green).

The reason for the spikes is that we are starting on a new epoch, and generating new data. Since the matrix is reshaped, the first element on each row is adjacent to the last element in the previous row. The first few elements on all rows (except the first) have dependencies that will not be included in the state, so the net will always perform badly on the first batch.

Whole program

 
This is the whole runnable program, just copy-paste and run. After each part in the article series the whole runnable program will be presented. If a line is referenced by number, these are the line numbers that we mean.

Bio: Erik Hallstr?m is a Deep Learning Research Engineer at Sana. He studied Engineering Physics and Machine Learning at Royal Institute of Technology in Stockholm. Also been living in Taiwan 學習中文. Interested in Deep Learning.

Original. Reposted with permission.

Related:



即兴是什么意思 减震器坏了有什么症状 什么是热射病 qeelin是什么牌子 tid是什么意思
锁骨下面的骨头叫什么 劫财是什么意思 这什么 9点半是什么时辰 静脉曲张挂号挂什么科
湿气严重吃什么药好得快 画像是什么意思 眼睫毛脱落是什么原因 黑眼圈是什么原因造成的 过敏性紫癜千万不能用什么药
吃什么疏通血管最快 审时度势是什么意思 青盐是什么盐 复方北豆根氨酚那敏片是什么药 七月一是什么星座
经常吃豆腐有什么好处和坏处hcv7jop6ns8r.cn 维生素b2是什么hcv9jop6ns0r.cn 狗狗吃什么kuyehao.com eb病毒是什么病hcv7jop6ns7r.cn 予字五行属什么wuhaiwuya.com
三氧化硫常温下是什么状态hcv8jop8ns6r.cn 爆表是什么意思hcv8jop4ns2r.cn 早晨5点是什么时辰hcv9jop7ns5r.cn 金牛座是什么象zsyouku.com 上火喝什么饮料hcv9jop3ns1r.cn
10月6日是什么星座hcv9jop7ns5r.cn 什么叫寓言故事hcv8jop1ns5r.cn 小舌头学名叫什么hcv8jop4ns9r.cn 魔芋是什么植物hcv8jop3ns3r.cn 号外是什么意思hcv8jop0ns6r.cn
高我是什么意思hcv9jop2ns0r.cn 公主切适合什么脸型baiqunet.com 有什么园hcv9jop0ns4r.cn 女人左下巴有痣代表什么hkuteam.com 家里起火代表什么预兆hcv7jop7ns1r.cn
百度